Friedreich's ataxia (FRDA) is a neurodegenerative disorder arising from a deficit of the mitochondrial iron chaperone, frataxin. Evidence primarily from yeast and mammalian cells is consistent with the hypothesis that a toxic hydroxyl radical generated from hydrogen peroxide (H2O2) via iron-catalyzed Fenton chemistry at least partially underlies the pathology associated with this disease. However, no whole-organism studies have been presented that directly test this hypothesis. We recently developed a Drosophila model that recapitulates the principal hallmarks of FRDA [Anderson PR, Kirby K, Hilliker A, Phillips JP (2005) Hum Mol Genet 14:3397-3405]. Using the Drosophila FRDA model, we now report that ectopic expression of enzymes that scavenge H2O2 suppresses the deleterious phenotypes associated with frataxin deficiency.

Read More: Hydrogen peroxide scavenging rescues frataxin deficiency...