Accept Cookies?
Provided by OpenGlobal E-commerce

Please wait while your page loads ...

FARAFARA Cure FA

Hypoxia Rescues Frataxin Loss by Restoring Iron Sulfur Cluster Biogenesis

Mootha lab team Frataxin participates in the biosynthesis of Fe-S clusters and is considered to be essential for viability. This paper reports that when grown in 1% ambient O2, FXN null yeast, human cells, and nematodes are fully viable. In human cells, hypoxia restores steady-state levels of Fe-S clusters and normalizes ATF4, NRF2, and IRP2 signaling events associated with FRDA. Cellular studies and in vitro reconstitution indicate that hypoxia acts through HIF-independent mechanisms that increase bioavailable iron as well as directly activate Fe-S synthesis. In a mouse model of FRDA, breathing 11% O2 attenuates the progression of ataxia, whereas breathing 55% O2 hastens it. This work identifies oxygen as a key environmental variable in the pathogenesis associated with FXN depletion, with important mechanistic and therapeutic implications.

Read the entire article HERE



Download the Q&A PDF HERE

About the Author

Jane Larkindale

SHARE

FacebookTwitterLinkedInYoutube
Family B.jpg

 

Archived in
  Scientific News


 

 

Tagged in
FARA Scientific News