Accept Cookies?
Provided by OpenGlobal E-commerce

Please wait while your page loads ...

FARAFARA Cure FA

 

Scientific News

FARA funds research progress

In this section, you will find the most recent FA research publications, many of which are funded by FARA, as well as information on upcoming conferences and symposiums. You can search for articles by date using the archive box in the right hand column. To locate FARA Funded or Supported Research, click the hyperlink in the right hand column. You may also search for specific content using key words or phrases in the search button at the top right of your screen. Please be sure to visit other key research sections of our website for information on FARA’s Grant Program and the Treatment Pipeline.

 


 

Comprehensive analysis of gene expression patterns in Friedreich's ataxia fibroblasts by RNA sequencing reveals altered levels of protein synthesis factors and solute carriers

Friedreich's ataxia (FRDA) is an autosomal recessive neurodegenerative disease usually caused by large homozygous expansions of GAA repeat sequences in intron 1 of the frataxin (FXN) gene. FRDA patients homozygous for GAA expansions have low FXN mRNA and protein levels when compared with heterozygous carriers or healthy controls. Frataxin is a mitochondrial protein involved in iron-sulfur cluster synthesis, and many FRDA phenotypes result from deficiencies in cellular metabolism due to lowered expression of FXN Presently, there is no effective treatment for FRDA, and biomarkers to measure therapeutic trial outcomes and/or to gauge disease progression are lacking. Peripheral tissues, including blood cells, buccal cells and skin fibroblasts, can readily be isolated from FRDA patients and used to define molecular hallmarks of disease pathogenesis. For instance, FXN mRNA and protein levels as well as FXN GAA-repeat tract lengths are routinely determined using all of these cell types. However, because these tissues are not directly involved in disease pathogenesis, their relevance as models of the molecular aspects of the disease is yet to be decided. Herein, we conducted unbiased RNA sequencing to profile the transcriptomes of fibroblast cell lines derived from 18 FRDA patients and 17 unaffected control individuals. Bioinformatic analyses revealed significantly upregulated expression of genes encoding plasma membrane solute carrier proteins in FRDA fibroblasts. Conversely, the expression of genes encoding accessory factors and enzymes involved in cytoplasmic and mitochondrial protein synthesis was consistently decreased in FRDA fibroblasts. Finally, comparison of genes differentially expressed in FRDA fibroblasts to three previously published gene expression signatures defined for FRDA blood cells showed substantial overlap between the independent datasets, including correspondingly deficient expression of antioxidant defense genes. Together, these results indicate that gene expression profiling of cells derived from peripheral tissues can, in fact, consistently reveal novel molecular pathways of the disease. When performed on statistically meaningful sample group sizes, unbiased global profiling analyses utilizing peripheral tissues are critical for the discovery and validation of FRDA disease biomarkers.

Read the entire article HERE

Early cerebellar deficits in mitochondrial biogenesis and respiratory chain complexes in the KIKO mouse model of Friedreich ataxia

Friedreich ataxia (FRDA), the most common recessive inherited ataxia, results from deficiency of frataxin, a small mitochondrial protein crucial for iron-sulphur cluster formation and ATP production. Frataxin deficiency is associated with mitochondrial dysfunction in FRDA patients and animal models; however, early mitochondrial pathology in FRDA cerebellum remains elusive. Using frataxin knock-in/knockout (KIKO) mice and KIKO mice carrying the mitoDendra transgene, we show early cerebellar deficits in mitochondrial biogenesis and respiratory chain complexes in this FRDA model. At asymptomatic stages, the levels of PGC-1α (PPARGC1A), the mitochondrial biogenesis master regulator, are significantly decreased in cerebellar homogenates of KIKO mice compared with age-matched controls. Similarly, the levels of the PGC-1α downstream effectors, NRF1 and Tfam, are significantly decreased, suggesting early impaired cerebellar mitochondrial biogenesis pathways. Early mitochondrial deficiency is further supported by significant reduction of the mitochondrial markers GRP75 (HSPA9) and mitofusin-1 in the cerebellar cortex. Moreover, the numbers of Dendra-labeled mitochondria are significantly decreased in cerebellar cortex, confirming asymptomatic cerebellar mitochondrial biogenesis deficits. Functionally, complex I and II enzyme activities are significantly reduced in isolated mitochondria and tissue homogenates from asymptomatic KIKO cerebella. Structurally, levels of the complex I core subunit NUDFB8 and complex II subunits SDHA and SDHB are significantly lower than those in age-matched controls. These results demonstrate complex I and II deficiency in KIKO cerebellum, consistent with defects identified in FRDA patient tissues. Thus, our findings identify early cerebellar mitochondrial biogenesis deficits as a potential mediator of cerebellar dysfunction and ataxia, thereby providing a potential therapeutic target for early intervention of FRDA.

Read the entire article HERE

Insights on the conformational dynamics of human frataxin through modifications of loop-1

Human frataxin (FXN) is a highly conserved mitochondrial protein involved in iron homeostasis and activation of the iron-sulfur cluster assembly. FXN deficiency causes the neurodegenerative disease Friedreich's Ataxia. Here, we investigated the effect of alterations in loop-1, a stretch presumably essential for FXN function, on the conformational stability and dynamics of the native state. We generated four loop-1 variants, carrying substitutions, insertions and deletions. All of them were stable and well-folded proteins. Fast local motions (ps-ns) and slower long-range conformational dynamics (μs-ms) were altered in some mutants as judged by NMR. Particularly, loop-1 modifications impact on the dynamics of a distant region that includes residues from the β-sheet, helix α1 and the C-terminal. Remarkably, all the mutants retain the ability to activate cysteine desulfurase, even when two of them exhibit a strong decrease in iron binding, revealing a differential sensitivity of these functional features to loop-1 perturbation. Consequently, we found that even for a small and relatively rigid protein, engineering a loop segment enables to alter conformational dynamics through a long-range effect, preserving the native-state structure and important aspects of function.

Read the entire article HERE

Peripheral Nerve Ultrasound in Friedreich's Ataxia

Sensory impairment in Friedreich's ataxia (FRDA) is generally accepted as being due to a ganglionopathy. The degree of contribution from axonal pathology remains a matter of debate. Nerve ultrasound may be able to differentiate these processes. The ultrasound cross-sectional area of median, ulnar, tibial and sural nerves of 8 patients with FRDA was compared with 8 age- and gender-matched healthy controls and with reference values in our population. The nerves of the patients with FRDA were significantly larger than healthy controls' at all upper limb sites (p

Read the entire article HERE

Personality and Neuropsychological Profiles in Friedreich Ataxia

Friedreich ataxia, an autosomal recessive mitochondrial disease, is the most frequent inherited ataxia. Many studies have attempted to identify cognitive and affective changes associated with the disease, but conflicting results have been obtained, depending on the tests used and because many of the samples studied were very small. We investigated personality and neuropsychological characteristics in a cohort of 47 patients with genetically confirmed disease. The neuropsychological battery assessed multiple cognition domains: processing speed, attention, working memory, executive functions, verbal memory, vocabulary, visual reasoning, emotional recognition, and social cognition. Personality was assessed with the Temperament and Character Inventory, and depressive symptoms were assessed with the Beck Depression Inventory. We found deficits of sustained attention, processing speed, semantic capacities, and verbal fluency only partly attributable to motor deficit or depressed mood. Visual reasoning, memory, and learning were preserved. Emotional processes and social cognition were unimpaired. We also detected a change in automatic processes, such as reading. Personality traits were characterized by high persistence and low self-transcendence. The mild cognitive impairment observed may be a developmental rather than degenerative problem, due to early cerebellum dysfunction, with the impairment of cognitive and emotional processing. Disease manifestations at crucial times for personality development may also have an important impact on personality traits.

Read the entire article HERE

Page 4 of 144

SHARE

FacebookTwitterLinkedinShare on Google+
Science B.jpg

 

Archived in
  Scientific News


 

 

Tagged in
FARA Scientific News