Accept Cookies?
Provided by OpenGlobal E-commerce

Please wait while your page loads ...

FARAFARA Cure FA

 

Scientific News

FARA funds research progress

In this section, you will find the most recent FA research publications, many of which are funded by FARA, as well as information on upcoming conferences and symposiums. You can search for articles by date using the archive box in the right hand column. To locate FARA Funded or Supported Research, click the hyperlink in the right hand column. You may also search for specific content using key words or phrases in the search button at the top right of your screen. Please be sure to visit other key research sections of our website for information on FARA’s Grant Program and the Treatment Pipeline.

 


 

The role of Nrf2 signaling in counteracting neurodegenerative diseases

The transcription factor Nrf2 (nuclear factor erythroid 2 p45-related factor 2) functions at the interface of cellular redox and intermediary metabolism. Nrf2 target genes encode antioxidant enzymes, and proteins involved in xenobiotic detoxification, repair and removal of damaged proteins and organelles, inflammation, and mitochondrial bioenergetics. The function of Nrf2 is altered in many neurodegenerative disorders, such as Huntington's disease, Alzheimer's disease, amyotrophic lateral sclerosis and Friedreich's ataxia. Nrf2 activation mitigates multiple pathogenic processes involved in these neurodegenerative disorders through upregulation of antioxidant defenses, inhibition of inflammation, improvement of mitochondrial function, and maintenance of protein homeostasis. Small molecule pharmacological activators of Nrf2 have shown protective effects in numerous animal models of neurodegenerative diseases, and in cultures of human cells expressing mutant proteins. Targeting Nrf2 signaling may provide a therapeutic option to delay onset, slow progression, and ameliorate symptoms of neurodegenerative disorders.

Read the entire article HERE

Effect Of Diazoxide on Friedreich Ataxia Models

Friedreich ataxia (FRDA) is an inherited recessive disorder caused by a deficiency in the mitochondrial protein frataxin. There is currently no effective treatment for FRDA available, especially for neurological deficits. In this study, we tested diazoxide, a drug commonly used as vasodilator in the treatment of acute hypertension, on cellular and animal models of FRDA. We first showed that diazoxide increases frataxin protein levels in FRDA lymphoblastoid cell lines, via the mTOR pathway. We then explored the potential therapeutic effect of diazoxide in frataxin-deficient transgenic YG8sR mice and we found that prolonged oral administration of 3mpk/d diazoxide was found to be safe, but produced variable effects concerning efficacy. YG8sR mice showed improved beam walk coordination abilities and footprint stride patterns, but a generally reduced locomotor activity. Moreover, they showed significantly increased frataxin expression, improved aconitase activity and decreased protein oxidation in cerebellum and brain mitochondrial tissue extracts. Further studies are needed before this drug should be considered for FRDA clinical trials.

Read the entire article HERE

Emotion Recognition and Psychological Comorbidity in Friedreich's Ataxia

Friedreich's ataxia (FRDA) is an autosomal recessive disease presenting with ataxia, corticospinal signs, peripheral neuropathy, and cardiac abnormalities. Little effort has been made to understand the psychological and emotional burden of the disease. The aim of our study was to measure patients' ability to recognize emotions using visual and non-verbal auditory hints, and to correlate this ability with psychological, neuropsychological, and neurological variables. We included 20 patients with FRDA, and 20 age, sex, and education matched healthy controls (HC). We measured emotion recognition using the Geneva Emotion Recognition Test (GERT). Neuropsychological status was assessed measuring memory, executive functions, and ability to recognize faces. Psychological tests were Patient Health Questionnaire-9 (PHQ-9), State Trait Anxiety Inventory-state/-trait (STAI-S/-T), and Structured Clinical Interview for DSM Disorders II. FRDA patients scored worse at the global assessment and showed impaired immediate visuospatial memory and executive functions. Patients presented lower STAI-S scores, and similar scores at the STAI-T, and PHQ-9 as compared to HC. Three patients were identified with personality disorders. Emotion recognition was impaired in FRDA with 29% reduction at the total GERT score (95% CI - 44.8%, - 12.6%; p 

Read the entire article HERE

Friedreich and dominant ataxias: quantitative differences in cerebellar dysfunction measurements

BACKGROUND: Sensitive outcome measures for clinical trials on cerebellar ataxias are lacking. Most cerebellar ataxias progress very slowly and quantitative measurements are required to evaluate cerebellar dysfunction.

METHODS: We evaluated two scales for rating cerebellar ataxias: the Composite Cerebellar Functional Severity (CCFS) Scale and Scale for the Assessment and Rating of Ataxia (SARA), in patients with spinocerebellar ataxia (SCA) and controls. We evaluated these scales for different diseases and investigated the factors governing the scores obtained. All patients were recruited prospectively.

RESULTS: There were 383 patients with Friedreich's ataxia (FRDA), 205 patients with SCA and 168 controls. In FRDA, 31% of the variance of cerebellar signs with the CCFS and 41% of that with SARA were explained by disease duration, age at onset and the shorter abnormal repeat in the FXN gene. Increases in CCFS and SARA scores per year were lower for FRDA than for SCA (CCFS index: 0.123±0.123 per year vs 0.163±0.179, P<0.001; SARA index: 1.5±1.2 vs 1.7±1.7, P<0.001), indicating slower cerebellar dysfunction indexes for FRDA than for SCA. Patients with SCA2 had higher CCFS scores than patients with SCA1 and SCA3, but similar SARA scores.

CONCLUSIONS: Cerebellar dysfunction, as measured with the CCFS and SARA scales, was more severe in FRDA than in patients with SCA, but with lower progression indexes, within the limits of these types of indexes. Ceiling effects may occur at late stages, for both scales. The CCFS scale is rater-independent and could be used in a multicentre context, as it is simple, rapid and fully automated.

TRIAL REGISTRATION NUMBER: ClinicalTrials.gov: NCT02069509.

Read the entire article HERE

Liquid Chromatography-High Resolution Mass Spectrometry Analysis of Platelet Frataxin as a Protein Biomarker for the Rare Disease Friedreich's Ataxia

Friedreich's ataxia (FA) is an autosomal recessive disease caused by an intronic GAA triplet expansion in the FXN gene, leading to reduced expression of the mitochondrial protein frataxin. FA is estimated to affect 1 in 50,000 with a mean age of death in the fourth decade of life. There are no approved treatments for FA, although experimental approaches, which involve up-regulation or replacement of frataxin protein, are being tested. Frataxin is undetectable in serum or plasma, and whole blood cannot be used because it is present in long-lived erythrocytes. Therefore, an assay was developed for analyzing frataxin in platelets, which have a half-life of 10-days. The assay is based on stable isotope dilution immunopurification two-dimensional nano-ultrahigh performance liquid chromatography/parallel reaction monitoring/mass spectrometry. The lower limit of quantification was 0.078 pg frataxin/μg protein and the assay had 100% sensitivity and specificity for discriminating between controls and FA cases. The mean levels of control and FA platelet frataxin were 9.4 2.6 pg/g protein and 2.4 0.6 pg/g protein, respectively. The assay should make it possible to rigorously monitor the effects of therapeutic interventions on frataxin expression in this devastating disease.

Read the entire article HERE

Page 5 of 147

SHARE

FacebookTwitterLinkedinShare on Google+
Family C.jpg

 

Archived in
  Scientific News


 

 

Tagged in
FARA Scientific News