Accept Cookies?
Provided by OpenGlobal E-commerce

Please wait while your page loads ...



Scientific News

FARA funds research progress

In this section, you will find the most recent FA research publications, many of which are funded by FARA, as well as information on upcoming conferences and symposiums. You can search for articles by date using the archive box in the right hand column. To locate FARA Funded or Supported Research, click the hyperlink in the right hand column. You may also search for specific content using key words or phrases in the search button at the top right of your screen. Please be sure to visit other key research sections of our website for information on FARA’s Grant Program and the Treatment Pipeline.



The role of oxidative stress in Friedreich's ataxia

Oxidative stress and increase in the levels of free radicals are important markers associated with several pathologies, including Alzheimer's disease, cancer and diabetes. Friedreich's ataxia is an excellent paradigmatic example of a disease in which oxidative stress plays an important, albeit not completely understood, role.

Friedreich's ataxia is a rare genetic neurodegenerative disease which involves partial silencing of frataxin, a small mitochondrial protein completely ignored before being linked to Friedreich's ataxia. More than twenty years later, we now know how important this protein is, being essential and part of the vital machinery which produces iron-sulfur clusters in the cell.

In this Review, we revisit the most important steps which have brought us to our current understanding of the function of frataxin and its role in disease. We discuss the current hypotheses on the role of oxidative stress in Friedreich's ataxia, reviewing some of the existing animal and cellular models. We also evaluate new techniques which can assist in the study of the disease mechanisms and in understanding the interplay between primary and secondary phenotypes.

Read the entire article HERE

Synthetic transcription elongation factors license transcription across repressive chromatin

Releasing a paused RNA polymerase II into productive elongation is tightly-regulated, especially at genes that impact human development and disease. To exert control over this rate-limiting step, we designed sequence-specific synthetic transcription elongation factors (Syn-TEFs). These molecules are composed of programmable DNA-binding ligands flexibly tethered to a small molecule that engages the transcription elongation machinery. By limiting activity to targeted loci, Syn-TEFs convert constituent modules from broad-spectrum inhibitors of transcription into gene-specific stimulators. We present Syn-TEF1, a molecule that actively enables transcription across repressive GAA repeats that silence frataxin expression in Friedreich's ataxia, a terminal neurodegenerative disease with no effective therapy. Furthermore, the modular design of Syn-TEF1 defines a general framework for developing a class of molecules that license transcription elongation at targeted genomic loci.

Read the entire article HERE

C-Path and FARA announce collaborative data aggregation project for Friedreich’s ataxia

Tucson, AZ, and Downingtown, PA — December 4, 2017 — Critical Path Institute's (C-Path) Data Collaboration Center (DCC) and the Friedreich's Ataxia Research Alliance (FARA) have announced that they will work together to develop an aggregated database of clinical data for Friedreich's ataxia (FA). Use of this database will promote collaborative research to support the understanding of natural history, potential biomarkers, and potential clinical endpoints for patients with FA, which will help researchers develop more efficient clinical trial protocols to test new therapies more quickly and effectively.

"FA is a rare disease which is progressive, affects multiple organ systems, and is fatal. Treating the disease is an urgent unmet need. FA research has reached a critical juncture, where several therapies have undergone or are in clinical trials, and additional new therapies are expected to start clinical development in the next few years. The purpose of this project is to leverage and share as much information as possible, to more fully understand progression of disease, how that progression can be captured in measurable endpoints, and the effect of placebo treatment. We want to ensure that we are using all the information available to design the most efficient and robust clinical trials, giving potential therapies the best chance of success," explained Jennifer Farmer, FARA's Executive Director.

Read the entire article HERE

Comprehensive analysis of gene expression patterns in Friedreich's ataxia fibroblasts by RNA sequencing reveals altered levels of protein synthesis factors and solute carriers

Friedreich's ataxia (FRDA) is an autosomal recessive neurodegenerative disease usually caused by large homozygous expansions of GAA repeat sequences in intron 1 of the frataxin (FXN) gene. FRDA patients homozygous for GAA expansions have low FXN mRNA and protein levels when compared with heterozygous carriers or healthy controls. Frataxin is a mitochondrial protein involved in iron-sulfur cluster synthesis, and many FRDA phenotypes result from deficiencies in cellular metabolism due to lowered expression of FXN Presently, there is no effective treatment for FRDA, and biomarkers to measure therapeutic trial outcomes and/or to gauge disease progression are lacking. Peripheral tissues, including blood cells, buccal cells and skin fibroblasts, can readily be isolated from FRDA patients and used to define molecular hallmarks of disease pathogenesis. For instance, FXN mRNA and protein levels as well as FXN GAA-repeat tract lengths are routinely determined using all of these cell types. However, because these tissues are not directly involved in disease pathogenesis, their relevance as models of the molecular aspects of the disease is yet to be decided. Herein, we conducted unbiased RNA sequencing to profile the transcriptomes of fibroblast cell lines derived from 18 FRDA patients and 17 unaffected control individuals. Bioinformatic analyses revealed significantly upregulated expression of genes encoding plasma membrane solute carrier proteins in FRDA fibroblasts. Conversely, the expression of genes encoding accessory factors and enzymes involved in cytoplasmic and mitochondrial protein synthesis was consistently decreased in FRDA fibroblasts. Finally, comparison of genes differentially expressed in FRDA fibroblasts to three previously published gene expression signatures defined for FRDA blood cells showed substantial overlap between the independent datasets, including correspondingly deficient expression of antioxidant defense genes. Together, these results indicate that gene expression profiling of cells derived from peripheral tissues can, in fact, consistently reveal novel molecular pathways of the disease. When performed on statistically meaningful sample group sizes, unbiased global profiling analyses utilizing peripheral tissues are critical for the discovery and validation of FRDA disease biomarkers.

Read the entire article HERE

Early cerebellar deficits in mitochondrial biogenesis and respiratory chain complexes in the KIKO mouse model of Friedreich ataxia

Friedreich ataxia (FRDA), the most common recessive inherited ataxia, results from deficiency of frataxin, a small mitochondrial protein crucial for iron-sulphur cluster formation and ATP production. Frataxin deficiency is associated with mitochondrial dysfunction in FRDA patients and animal models; however, early mitochondrial pathology in FRDA cerebellum remains elusive. Using frataxin knock-in/knockout (KIKO) mice and KIKO mice carrying the mitoDendra transgene, we show early cerebellar deficits in mitochondrial biogenesis and respiratory chain complexes in this FRDA model. At asymptomatic stages, the levels of PGC-1α (PPARGC1A), the mitochondrial biogenesis master regulator, are significantly decreased in cerebellar homogenates of KIKO mice compared with age-matched controls. Similarly, the levels of the PGC-1α downstream effectors, NRF1 and Tfam, are significantly decreased, suggesting early impaired cerebellar mitochondrial biogenesis pathways. Early mitochondrial deficiency is further supported by significant reduction of the mitochondrial markers GRP75 (HSPA9) and mitofusin-1 in the cerebellar cortex. Moreover, the numbers of Dendra-labeled mitochondria are significantly decreased in cerebellar cortex, confirming asymptomatic cerebellar mitochondrial biogenesis deficits. Functionally, complex I and II enzyme activities are significantly reduced in isolated mitochondria and tissue homogenates from asymptomatic KIKO cerebella. Structurally, levels of the complex I core subunit NUDFB8 and complex II subunits SDHA and SDHB are significantly lower than those in age-matched controls. These results demonstrate complex I and II deficiency in KIKO cerebellum, consistent with defects identified in FRDA patient tissues. Thus, our findings identify early cerebellar mitochondrial biogenesis deficits as a potential mediator of cerebellar dysfunction and ataxia, thereby providing a potential therapeutic target for early intervention of FRDA.

Read the entire article HERE

Page 7 of 148


FacebookTwitterLinkedinShare on Google+
Family A.jpg


Archived in
  Scientific News



Tagged in
FARA Scientific News