Accept Cookies?
Provided by OpenGlobal E-commerce

Please wait while your page loads ...

FARAFARA Cure FA

 

Scientific News

FARA funds research progress

In this section, you will find the most recent FA research publications, many of which are funded by FARA, as well as information on upcoming conferences and symposiums. You can search for articles by date using the archive box in the right hand column. To locate FARA Funded or Supported Research, click the hyperlink in the right hand column. You may also search for specific content using key words or phrases in the search button at the top right of your screen. Please be sure to visit other key research sections of our website for information on FARA’s Grant Program and the Treatment Pipeline.

 


 

Early cerebellar deficits in mitochondrial biogenesis and respiratory chain complexes in the KIKO mouse model of Friedreich ataxia

Friedreich ataxia (FRDA), the most common recessive inherited ataxia, results from deficiency of frataxin, a small mitochondrial protein crucial for iron-sulphur cluster formation and ATP production. Frataxin deficiency is associated with mitochondrial dysfunction in FRDA patients and animal models; however, early mitochondrial pathology in FRDA cerebellum remains elusive. Using frataxin knock-in/knockout (KIKO) mice and KIKO mice carrying the mitoDendra transgene, we show early cerebellar deficits in mitochondrial biogenesis and respiratory chain complexes in this FRDA model. At asymptomatic stages, the levels of PGC-1α (PPARGC1A), the mitochondrial biogenesis master regulator, are significantly decreased in cerebellar homogenates of KIKO mice compared with age-matched controls. Similarly, the levels of the PGC-1α downstream effectors, NRF1 and Tfam, are significantly decreased, suggesting early impaired cerebellar mitochondrial biogenesis pathways. Early mitochondrial deficiency is further supported by significant reduction of the mitochondrial markers GRP75 (HSPA9) and mitofusin-1 in the cerebellar cortex. Moreover, the numbers of Dendra-labeled mitochondria are significantly decreased in cerebellar cortex, confirming asymptomatic cerebellar mitochondrial biogenesis deficits. Functionally, complex I and II enzyme activities are significantly reduced in isolated mitochondria and tissue homogenates from asymptomatic KIKO cerebella. Structurally, levels of the complex I core subunit NUDFB8 and complex II subunits SDHA and SDHB are significantly lower than those in age-matched controls. These results demonstrate complex I and II deficiency in KIKO cerebellum, consistent with defects identified in FRDA patient tissues. Thus, our findings identify early cerebellar mitochondrial biogenesis deficits as a potential mediator of cerebellar dysfunction and ataxia, thereby providing a potential therapeutic target for early intervention of FRDA.

Read the entire article HERE

Insights on the conformational dynamics of human frataxin through modifications of loop-1

Human frataxin (FXN) is a highly conserved mitochondrial protein involved in iron homeostasis and activation of the iron-sulfur cluster assembly. FXN deficiency causes the neurodegenerative disease Friedreich's Ataxia. Here, we investigated the effect of alterations in loop-1, a stretch presumably essential for FXN function, on the conformational stability and dynamics of the native state. We generated four loop-1 variants, carrying substitutions, insertions and deletions. All of them were stable and well-folded proteins. Fast local motions (ps-ns) and slower long-range conformational dynamics (μs-ms) were altered in some mutants as judged by NMR. Particularly, loop-1 modifications impact on the dynamics of a distant region that includes residues from the β-sheet, helix α1 and the C-terminal. Remarkably, all the mutants retain the ability to activate cysteine desulfurase, even when two of them exhibit a strong decrease in iron binding, revealing a differential sensitivity of these functional features to loop-1 perturbation. Consequently, we found that even for a small and relatively rigid protein, engineering a loop segment enables to alter conformational dynamics through a long-range effect, preserving the native-state structure and important aspects of function.

Read the entire article HERE

Peripheral Nerve Ultrasound in Friedreich's Ataxia

Sensory impairment in Friedreich's ataxia (FRDA) is generally accepted as being due to a ganglionopathy. The degree of contribution from axonal pathology remains a matter of debate. Nerve ultrasound may be able to differentiate these processes. The ultrasound cross-sectional area of median, ulnar, tibial and sural nerves of 8 patients with FRDA was compared with 8 age- and gender-matched healthy controls and with reference values in our population. The nerves of the patients with FRDA were significantly larger than healthy controls' at all upper limb sites (p

Read the entire article HERE

Personality and Neuropsychological Profiles in Friedreich Ataxia

Friedreich ataxia, an autosomal recessive mitochondrial disease, is the most frequent inherited ataxia. Many studies have attempted to identify cognitive and affective changes associated with the disease, but conflicting results have been obtained, depending on the tests used and because many of the samples studied were very small. We investigated personality and neuropsychological characteristics in a cohort of 47 patients with genetically confirmed disease. The neuropsychological battery assessed multiple cognition domains: processing speed, attention, working memory, executive functions, verbal memory, vocabulary, visual reasoning, emotional recognition, and social cognition. Personality was assessed with the Temperament and Character Inventory, and depressive symptoms were assessed with the Beck Depression Inventory. We found deficits of sustained attention, processing speed, semantic capacities, and verbal fluency only partly attributable to motor deficit or depressed mood. Visual reasoning, memory, and learning were preserved. Emotional processes and social cognition were unimpaired. We also detected a change in automatic processes, such as reading. Personality traits were characterized by high persistence and low self-transcendence. The mild cognitive impairment observed may be a developmental rather than degenerative problem, due to early cerebellum dysfunction, with the impairment of cognitive and emotional processing. Disease manifestations at crucial times for personality development may also have an important impact on personality traits.

Read the entire article HERE

Agilis Biotherapeutics Announces Orphan Product Designation Approval in Europe for the Treatment of Friedreich Ataxia

First Gene Therapy Treatment Candidate to Receive Orphan Designation in EU and USA

Agilis Biotherapeutics, Inc. (Agilis), a biotechnology company advancing innovative DNA therapeutics for rare genetic diseases that affect the central nervous system (CNS), announced today that the European Commission (EC) has granted Orphan Medicinal Product (OMP) designation in the European Union (EU) to the Company’s gene therapy product candidate, AGIL-FA, being developed for the treatment of Friedreich ataxia (FA), an inherited degenerative neuromuscular disorder resulting in loss of motor coordination and strength, hearing, vision, speech and often premature death. The EC’s approval follows a positive opinion in July 2017 from the European Medicine Agency’s (EMA) Committee for Orphan Medicinal Products (COMP). This follows the Orphan Drug Designation for AGIL-FA granted by the U.S. Food and Drug Administration (FDA) last year. The Company’s gene therapies for AADC deficiency and Angelman syndrome have previously received orphan status in both the EU and US.

"Receiving the first orphan designations for a gene therapy product candidate from the FDA and now the EU for the treatment of FA is an honor," said Mark Pykett, President and CEO of Agilis. "The orphan designation is another step on our path to bring this important new therapy to patients who currently lack treatment options."

Read the entire article HERE

Page 10 of 150

SHARE

FacebookTwitterLinkedInYoutube
Science D.jpg

 

Archived in
  Scientific News


 

 

Tagged in
FARA Scientific News