Accept Cookies?
Provided by OpenGlobal E-commerce

Please wait while your page loads ...

Mitochondrial Damage and Senescence Phenotype of Cells Derived From a Novel Frataxin G127V Point Mutation Mouse Model of Friedreich's Ataxia

A prevalent missense mutation among Friedreich's ataxia (FRDA) patients changes a glycine at position 130 to valine (G130V). Herein, we report generation of the first mouse model harboring a Fxn point mutation. Changing the evolutionarily conserved glycine 127 in mouse Fxn to valine results in a failure to thrive phenotype in homozygous animals and a substantially reduced number of offspring. Like G130V in FRDA, the G127V mutation results in a dramatic decrease of Fxn protein without affecting transcript synthesis or splicing. FxnG127V mouse embryonic fibroblasts exhibit significantly reduced proliferation and increased cell senescence. These defects are evident in early passage cells and are exacerbated at later passages. Furthermore, increased frequency of mitochondrial DNA (mtDNA) lesions and fragmentation are accompanied by marked amplification of mtDNA in FxnG127V cells. Bioenergetics analyses demonstrate higher sensitivity and reduced cellular respiration of FxnG127V cells upon alteration of fatty acid availability. Importantly, substitution of FxnWT with FxnG127V is compatible with life and cellular proliferation defects can be rescued by mitigation of oxidative stress via hypoxia or induction of the NRF2 pathway. We propose FxnG127V cells as a simple and robust model for testing therapeutic approaches for FRDA.

Read the entire article HERE

SHARE

FacebookTwitterLinkedInYoutube
Family C.jpg

 

Archived in
  Scientific News


 

 

Tagged in
FARA Scientific News


Site Map     Privacy Policy     Service Terms     Log-in     Contact     Charity Navigator