Please wait while your page loads ...

The Potential of the Novel NAD+ Supplementing Agent, SNH6, as a Therapeutic Strategy for the Treatment of Friedreich's Ataxia

In this study, the activity of the novel compound, 6-methoxy-2-salicylaldehyde nicotinoyl hydrazone (SNH6), was assessed in vivo using the well-characterized muscle creatine kinase (MCK) conditional frataxin knockout (KO) mouse model of Friedreich's ataxia (FA). The design of SNH6 incorporated a dual-mechanism mediating: (1) NAD+-supplementation to restore cardiac bioenergetics; and (2) iron chelation to remove toxic mitochondrial iron. In these studies, MCK wild-type (WT) and KO mice were treated for 4-weeks from the asymptomatic age of 4.5-weeks to 8.5-weeks of age, where the mouse displays an overt cardiomyopathy. SNH6-treatment significantly elevated NAD+ and markedly increased NAD+ consumption in WT and KO hearts. In SNH6-treated KO mice, nuclear Sirt1 activity was also significantly increased together with the NAD+-metabolic product, nicotinamide (NAM). Therefore, NAD+-supplementation by SNH6 aided mitochondrial function and cardiac bioenergetics. SNH6 also chelated iron in cultured cardiac cells and also removed iron-loading in vivo from the MCK KO heart. Despite its dual beneficial properties of supplementing NAD+ and chelating iron, SNH6 did not mitigate cardiomyopathy development in the MCK KO mouse. Collectively, SNH6 is an innovative therapeutic with marked pharmacological efficacy, which successfully enhanced cardiac NAD+ and nuclear Sirt1 activity and reduced cardiac iron-loading in MCK KO mice. No other pharmaceutical yet designed exhibits both these effective pharmacological properties.

Read the entire article HERE


Scientific News Archives

Tagged in
Scientific News


Privacy Policy      Service Terms      Contact      Charity Navigator