Accept Cookies?
Provided by OpenGlobal E-commerce

Please wait while your page loads ...

 

Scientific News

FARA funds research progress

In this section, you will find the most recent FA research publications, many of which are funded by FARA, as well as information on upcoming conferences and symposiums. You can search for articles by date using the archive box in the right hand column. To locate FARA Funded or Supported Research, click the hyperlink in the right hand column. You may also search for specific content using key words or phrases in the search button at the top right of your screen. Please be sure to visit other key research sections of our website for information on FARA’s Grant Program and the Treatment Pipeline.


Frataxin gene editing rescues Friedreich's ataxia pathology in dorsal root ganglia organoid-derived sensory neurons

In this study, the authors generate dorsal root ganglia organoids (DRG organoids) by in vitro differentiation of human iPSCs. Bulk and single-cell RNA sequencing show that DRG organoids present a transcriptional signature similar to native DRGs and display the main peripheral sensory neuronal and glial cell subtypes. Furthermore, when co-cultured with human intrafusal muscle fibers, DRG organoid sensory neurons contact their peripheral targets and reconstitute the muscle spindle proprioceptive receptors. FRDA DRG organoids model some molecular and cellular deficits of the disease that are rescued when the entire FXN intron 1 is removed, and not with the excision of the expanded GAA tract. These results strongly suggest that removal of the repressed chromatin flanking the GAA tract might contribute to rescue FXN total expression and fully revert the pathological hallmarks of FRDA DRG neurons.

Read the Entire Article Here

Inherited Cerebellar Ataxias: 5-Year Experience of the Irish National Ataxia Clinic

Establishing a molecular diagnosis in patients with progressive ataxia is often challenging due to significant genetic and clinical heterogeneity and requires a methodical approach with expert clinical evaluation and investigations. This study describes the 5-year experience of the National Ataxia Clinic (NAC), Ireland. All adults with ataxia attending the NAC between 2014 and 2019 were evaluated. All individuals underwent detailed clinical assessment and investigations including, where appropriate, genetic testing using next-generation sequencing. For all patients, acquired causes were ruled out. A total of 254 patients from 196 families were assessed; with growth of the clinic cohort by 82% from 133 to 242 over the 5-year period. The underlying genetic cause was identified in 128/196 probands (65.3%). The detection rate for repeat expansion disorder gene testing was 47.7% (82/172) and using NGS gene panel, a genetic diagnosis was obtained in 30/84 (35.7%). Whole exome sequencing identified the molecular diagnosis in 4/20 (20%), and whole genome sequencing provided genetic diagnosis in 1/5 (20%). The commonest diagnosis was Friedreich's ataxia (68/128, 53.1%). SPG7-associated ataxia was the second most common diagnosis (21/128, 16.4%), followed by ANO10-associated spastic ataxia, ataxia telangiectasia (AT), and other rarer phenotypes. These results highlight that careful clinical phenotyping in a dedicated ataxia clinic is crucial for appropriate genetic testing in selected patients in a timely manner. Advanced genetic testing has significantly improved the diagnostic yield in patients with suspected genetic ataxia and should be considered in all individuals with negative repeat expansion testing.

Read the Entire Article Here

Atypical structures of GAA/TTC trinucleotide repeats underlying Friedreich's ataxia: DNA triplexes and RNA/DNA hybrids

Expansion of the GAA/TTC repeats in the first intron of the FXN gene causes Friedreich's ataxia. Non-canonical structures are linked to this expansion. DNA triplexes and R-loops are believed to arrest transcription, which results in frataxin deficiency and eventual neurodegeneration. This study presents a systematic in silico characterization of the possible DNA triplexes that could be assembled with GAA and TTC strands; the two hybrid duplexes [r(GAA):d(TTC) and d(GAA):r(UUC)] in an R-loop; and three hybrid triplexes that could form during bidirectional transcription when the non-template DNA strand bonds with the hybrid duplex (collapsed R-loops, where the two DNA strands remain antiparallel). For both Y·R:Y and R·R:Y DNA triplexes, the parallel third strand orientation is more stable; both parallel and antiparallel protonated d(GA+A)·d(GAA):d(TTC) triplexes are stable. Apparent contradictions in the literature about the R·R:Y triplex stability is probably due to lack of molecular resolution, since shifting the third strand by a single nucleotide alters the stability ranking. In the collapsed R-loops, antiparallel d(TTC+)·d(GAA):r(UUC) is unstable, while parallel d(GAA)·r(GAA):d(TTC) and d(GA+A)·r(GAA):d(TTC) are stable. In addition to providing new structural perspectives for specific therapeutic aims, these results contribute to a systematic structural basis for the emerging field of quantitative R-loop biology.

Read the Entire Article Here

Reata provides update on development of omaveloxolone in FA

Omaveloxolone for Friedreich’s Ataxia

Following the announcement of the positive data from the MOXIe Part 2 study in October 2019, we have planned, subject to discussion with regulatory authorities, to proceed with a submission for marketing approval of omaveloxolone for the treatment of Friedreich’s ataxia (“FA”) in the United States. We recently completed a Type C meeting in which the FDA provided us with guidance that it does not have any concerns with the reliability of the mFARS primary endpoint results in the MOXIe Part 2 study. Nevertheless, the FDA is not convinced that the MOXIe Part 2 results will support a single study approval without additional evidence that lends persuasiveness to the results. In preliminary comments for the meeting, the FDA stated that we will need to conduct a second pivotal trial that confirms the mFARS results of the MOXIe Part 2 study with a similar magnitude of effect... (more)

Read the Full Press Release Here

Test-retest reliability of the Friedreich's ataxia rating scale

The modified Friedreich Ataxia Rating Scale (mFARS) is a disease specific, exam-based neurological rating scale commonly used as an outcome measure in clinical trials. While extensive clinimetric testing indicates its validity in measuring disease progression, formal test-retest reliability was lacking. To fill this gap, the authors acquired results from screening and baseline visits of several large clinical trials and calculated intraclass correlation coefficients, coefficients of variance, standard error, and the minimally detectable changes. This study demonstrated excellent test-retest reliability of the mFARS, and its upright stability subscore.

Read the Entire Article Here

Page 9 of 201

SHARE

FacebookTwitterLinkedInYoutube
Event D.jpg

 

Archived in
  Scientific News


 

 

Tagged in
FARA Scientific News


Site Map     Privacy Policy     Service Terms     Log-in     Contact     Charity Navigator