Accept Cookies?
Provided by OpenGlobal E-commerce

Please wait while your page loads ...

 

Scientific News

FARA funds research progress

In this section, you will find the most recent FA research publications, many of which are funded by FARA, as well as information on upcoming conferences and symposiums. You can search for articles by date using the archive box in the right hand column. To locate FARA Funded or Supported Research, click the hyperlink in the right hand column. You may also search for specific content using key words or phrases in the search button at the top right of your screen. Please be sure to visit other key research sections of our website for information on FARA’s Grant Program and the Treatment Pipeline.


Frataxin deficiency promotes endothelial senescence in pulmonary hypertension

The dynamic regulation of endothelial pathophenotypes in pulmonary hypertension (PH) remains undefined. Cellular senescence is linked to PH with intracardiac shunts; however, its regulation across PH subtypes is unknown. Since endothelial deficiency of iron-sulfur (Fe-S) clusters is pathogenic in PH, the authors hypothesized that a Fe-S biogenesis protein, frataxin (FXN), controls endothelial senescence. An endothelial subpopulation in rodent and patient lungs across PH subtypes exhibited reduced FXN and elevated senescence. In vitro, hypoxic and inflammatory FXN deficiency abrogated activity of endothelial Fe-S-containing polymerases, promoting replication stress, DNA damage response, and senescence. This was also observed in stem cell-derived endothelial cells from Friedreich's ataxia (FRDA), a genetic disease of FXN deficiency, ataxia, and cardiomyopathy, often with PH. In vivo, FXN deficiency-dependent senescence drove vessel inflammation, remodeling, and PH, while pharmacologic removal of senescent cells in Fxn-deficient rodents ameliorated PH. These data offer a model of endothelial biology in PH, where FXN deficiency generates a senescent endothelial subpopulation, promoting vascular inflammatory and proliferative signals in other cells to drive disease. These findings also establish an endothelial etiology for PH in FRDA and left heart disease and support therapeutic development of senolytic drugs, reversing effects of Fe-S deficiency across PH subtypes.

Read the Full article here

The Cardioprotective Mechanism of Phenylaminoethyl Selenides (PAESe) Against Doxorubicin-Induced Cardiotoxicity Involves Frataxin

Doxorubicin (DOX) is an anthracycline cancer chemotherapeutic that exhibits cumulative dose-limiting cardiotoxicity and limits its clinical utility. DOX treatment results in the development of morbid cardiac hypertrophy that progresses to congestive heart failure and death. Recent evidence suggests that during the development of DOX mediated cardiac hypertrophy, mitochondrial energetics are severely compromised, thus priming the cardiomyocyte for failure. To mitigate cumulative dose (5 mg/kg, QIW x 4 weeks with 2 weeks recovery) dependent DOX, mediated cardiac hypertrophy, the authors applied an orally active selenium based compound termed phenylaminoethyl selenides (PAESe) (QIW 10 mg/kg x 5) to the animal model and observed that PAESe attenuates DOX-mediated cardiac hypertrophy in athymic mice, as observed by MRI analysis. Mechanistically, DOX impedes the stability of the iron-sulfur cluster biogenesis protein Frataxin (FXN) (0.5 fold), resulting in enhanced mitochondrial free iron accumulation (2.5 fold) and reduced aconitase activity (0.4 fold). These findings further indicate that PAESe prevented the reduction of FXN levels and the ensuing elevation of mitochondrial free iron levels. PAESe has been shown to have anti-oxidative properties in part, by regeneration of glutathione levels. Therefore, the authors observed that PAESe can mitigate DOX mediated cardiac hypertrophy by enhancing glutathione activity (0.4 fold) and inhibiting ROS formation (1.8 fold). Lastly, the data showed that DOX significantly reduced cellular respiration (basal (5%) and uncoupled (10%)) in H9C2 cardiomyoblasts and that PAESe protects against the DOX-mediated attenuation of cellular respiration. In conclusion, the current study determined the protective mechanism of PAESe against DOX mediated myocardial damage and that FXN is implicitly involved in DOX-mediated cardiotoxicity.

Read the Full article here

Variable-Temperature Electrospray Ionization for Temperature-Dependent Folding/Refolding Reactions of Proteins and Ligand Binding

Stabilities and structure(s) of proteins are directly coupled to their local environment or Gibbs free energy landscape as defined by solvent, temperature, pressure, and concentration. Solution pH, ionic strength, cofactors, chemical chaperones, and osmolytes perturb the chemical potential and induce further changes in structure, stability, and function. At present, no single analytical technique can monitor these effects in a single measurement. Mass spectrometry and ion mobility-mass spectrometry play increasingly essential roles in studies of proteins, protein complexes, and even membrane protein complexes; however, with few exceptions, the effects of the solution temperature on the stability and structure(s) of analytes have not been thoroughly investigated. This article describes a new variable-temperature electrospray ionization (vT-ESI) source that utilizes a thermoelectric chip to cool and heat the solution contained within the static ESI emitter. This design allows for solution temperatures to be varied from ∼5 to 98 °C with short equilibration times (<2 min) between precisely controlled temperature changes. The performance of the apparatus for vT-ESI-mass spectrometry and vT-ESI-ion mobility-mass spectrometry studies of cold- and heat-folding reactions is demonstrated using ubiquitin and frataxin. Instrument performance for studies on temperature-dependent ligand binding is shown using the chaperonin GroEL.

Read the Full article here

Longitudinal structural brain changes in Friedreich ataxia depend on disease severity: the IMAGE-FRDA study

Disease progression in Friedreich ataxia remains poorly understood. This study aimed to characterise longitudinal change in brain structure using a multi-modal approach across cerebral and cerebellar grey and white matter. T1-weighted, diffusion-tensor, and magnetisation transfer magnetic resonance images were obtained from 28 individuals with Friedreich ataxia and 29 age- and gender-matched controls at two time-points, 2 years apart. Region-of-interest and exploratory between-group comparisons assessed changes in brain macrostructure (cerebellar lobule volume, cerebral cortical thickness/gyrification, brain white matter volume) and microstructure (white matter fractional anisotropy, mean/axial/radial diffusivity, magnetisation transfer ratio). Rates of change were correlated against change in neurological severity, Time 1 severity, and onset age. Individuals with Friedreich ataxia had a greater rate of white matter volume loss than controls in the superior cerebellar peduncles and right peri-thalamic/posterior cerebral regions, and greater reduction in left primary motor cortex gyrification. Greater cerebellar/brainstem white matter volume loss and right dorsal premotor gyrification loss was observed amongst individuals with less severe neurological symptoms at Time 1. Conversely, cerebral atrophy and changes in axial diffusivity were observed in individuals with more severe Time 1 symptoms. Progression in radial diffusivity was more pronounced amongst individuals with earlier disease onset. Greater right ventral premotor gyrification loss correlated with greater neurological progression. In conclusion, heterogeneity in Friedreich ataxia progression is observed at the neurobiological level, with evidence of earlier cerebellar and later cerebral degeneration.

Read the Full article here

Remember friedreich ataxia even in a toddler with apparently isolated dilated (not hypertrophic!) cardiomyopathy: revisited

Neurological manifestations in FRDA often precede cardiac involvement, presenting mainly as hypertrophic cardiomyopathy. The authors describe a toddler with apparently isolated severe heart failure, successfully managed with heart transplant (HT). Although well described in adolescents and adults, onset of FRDA is very uncommon in toddlers and neurological ataxic features are predominant. The presenting symptom of cardiomyopathy is very rare. Similar history is rarely reported in literature, including an aggressive cardiomyopathy in children younger than 5years-old. The patient was diagnosed with FRDA at a postoperative stage due to minimal neurological manifestations. Moreover, the novelty of this study lies in demonstrating a major DNA triplet repeat expansion in skeletal muscle compared to DNA from peripheral blood leukocytes. These results support the concept that triplet repeat expansion is variable among different tissues in FRDA, and in this case it was more expanded in the post mitotic muscular tissue than in blood cells. The study highlights the importance of taking in consideration this rare condition even in a toddler with apparently isolated cardiomyopathy and especially when conventional investigations give negative results. The authors discuss the potential trigger effect of heart transplant as a precipitating factor in manifesting neurological symptoms. This observation relates to three patients described so far (the third patient died suddenly). Early onset cardiomyopathy with FRDA should increase awareness of this rare condition and the authors highlight HT successful outcome. Further reports are needed to delineate this rare condition in children.

Read the Full article here

Page 2 of 212

SHARE

FacebookTwitterLinkedInYoutube
lab-group.jpg

 

Archived in
  Scientific News


 

 

Tagged in
FARA Scientific News


Site Map     Privacy Policy      Service Terms      Contact      Charity Navigator