Mitochondrial aconitase (ACO2) has been postulated as a redox sensor in the tricarboxylic acid cycle. Its high sensitivity towards reactive oxygen and nitrogen species is due to its particularly labile [4Fe-4S]2+ prosthetic group which yields an inactive [3Fe-4S]+ cluster upon oxidation. Moreover, ACO2 was found as a main oxidant target during aging and in pathologies where mitochondrial dysfunction is implied. Herein, the authors report the expression and characterization of recombinant human ACO2 and its interaction with frataxin (FXN), a protein that participates in the de novo biosynthesis of Fe-S clusters. A high yield of pure ACO2 (≥99%, 22 ± 2 U/mg) was obtained and kinetic parameters for citrate, isocitrate, and cis-aconitate were determined. Superoxide, carbonate radical, peroxynitrite, and hydrogen peroxide reacted with ACO2 with second-order rate constants of 108, 108, 105, and 102 M-1 s-1, respectively. Temperature-induced unfolding assessed by tryptophan fluorescence of ACO2 resulted in apparent melting temperatures of 51.1 ± 0.5 and 43.6 ± 0.2 °C for [4Fe-4S]2+ and [3Fe-4S]+ states of ACO2, sustaining lower thermal stability upon cluster oxidation. Differences in protein dynamics produced by the Fe-S cluster redox state were addressed by molecular dynamics simulations. Reactivation of [3Fe-4S]+-ACO2 by FXN was verified by activation assays and direct iron-dependent interaction was confirmed by protein-protein interaction ELISA and fluorescence spectroscopic assays. Multimer modeling and protein-protein docking predicted an ACO2-FXN complex where the metal ion binding region of FXN approaches the [3Fe-4S]+ cluster, supporting that FXN is a partner for reactivation of ACO2 upon oxidative cluster inactivation.

Read the Full article here