Accept Cookies?
Provided by OpenGlobal E-commerce

Please wait while your page loads ...

FARAFARA Cure FA

 

FARA Funded Research

Your generous support has funded all the research listed below.

For more information on FARA-funded research & scientists, please visit FARA Supported Research, Active Clinical Trials and the Featured Scientist.


 

 

Calcium Deregulation: Novel Insights to Understand Friedreich's Ataxia Pathophysiology

Friedreich's Ataxia (FRDA) is a neurodegenerative disorder, characterized by degeneration of dorsal root ganglia, cerebellum and cardiomyopathy. This study investigates Ca2+ homeostasis in cerebellar granule neurons (CGNs) and in cardiomyocytes to understand the pathogenesis of degeneration. Ca2+ homeostasis in neurons and cardiomyocytes is not only crucial for cell health, but is also importantly involved in the ability of both neurons and cardiomyocytes to function. By challenging Ca2+ homeostasis in CGNs, and in adult and neonatal cardiomyocytes of FRDA models, we have assessed the impact of frataxin decrease on both neuronal and cardiac physiopathology. Interestingly, we have found that Ca2+ homeostasis is altered both cell types. CGNs showed a Ca2+ mishandling under depolarizing conditions and this was also reflected in the endoplasmic reticulum (ER) content. In cardiomyocytes we found that the sarcoplasmic reticulum (SR) Ca2+ content was pathologically reduced, and that mitochondrial Ca2+ uptake was impaired. Our findings demonstrate that in both neurons and cardiomyocytes the decreased Ca2+ level within the stores has a comparable detrimental impact in their physiology. In cardiomyocytes, we found that ryanodine receptors (RyRs) may be leaking and expel more Ca2+ out from the SR. At the same time mitochondrial uptake was altered and we found that Vitamin E can restore this defect. Moreover, Vitamin E protects from cell death induced by hypoxia-reperfusion injury, revealing novel properties of Vitamin E as potential therapeutic tool for FRDA cardiomyopathy.

Read the entire article HERE

Phenothiazine antioxidants increase mitochondrial biogenesis and frataxin levels in Friedreich's ataxia cells

Friedreich's ataxia (FRDA) is a progressive neurodegenerative disease that is linked to transcriptional repression of the nuclear FXN gene encoding the essential mitochondrial protein frataxin (FXN). Compounds that increase frataxin levels may enable effective therapeutic intervention for blunting disease progression. Recently, we showed that lipophilic methylene violet (MV) and methylene blue (MB) analogues both conferred benefit to cultured FRDA cells in several regards, including ROS suppression, maintenance of mitochondrial membrane potential and increased ATP production. Some of the MB analogues were also shown to promote increased frataxin levels and mitochondrial biogenesis. Presently, we report that two of the MV analogues studied previously (1 and 2) also increased frataxin levels and mitochondrial biogenesis significantly. Because the substitution pattern in the two series of compounds was not the same, we also prepared new MV derivatives having the same substitution pattern as the original MB derivatives studied to enable a more direct comparison. Two of the new MV compounds, 4b and 6b, exhibited enhanced antioxidant capability, increased frataxin levels and mitochondrial biogenesis, and improved aconitase activity. These encouraging findings demonstrated that the MV analogues had better overall activity with less cytotoxicity.

Read the entire article HERE

Chemical synthesis of lipophilic methylene blue analogues which increase mitochondrial biogenesis and frataxin levels

As part of an ongoing program to develop potential therapeutic agents for the treatment of the neurodegenerative disease Friedreich׳s ataxia (FRDA), this group has prepared a number of lipophilic methylene blue analogues. Some of these compounds significantly increase mitochondrial biogenesis and frataxin levels in cultured Friedreich's ataxia cells . This data article describes the chemical synthesis and full physicochemical characterization of the new analogues.

Read the entire article HERE

Activating frataxin expression by single-stranded siRNAs targeting the GAA repeat expansion

Friedreich's ataxia (FRDA) is an incurable neurodegenerative disorder caused by reduced expression of the mitochondrial protein frataxin (FXN). The genetic cause of the disease is an expanded GAA repeat within the FXN gene. Agents that increase expression of FXN protein are a potential approach to therapy. This group has previously described anti-trinucleotide GAA duplex RNAs (dsRNAs) and antisense oligonucleotides (ASOs) that activate FXN protein expression in multiple patient derived cell lines. Here they test two distinct series of compounds for their ability to increase FXN expression. ASOs with butane linkers showed low potency, which is consistent with the low Tm values and suggesting that flexible conformation impairs activity. By contrast, single-stranded siRNAs (ss-siRNAs) that combine the strengths of dsRNA and ASO approaches had nanomolar potencies. ss-siRNAs provide an additional option for developing nucleic acid therapeutics to treat FRDA.

Read the entire article HERE

Novel Nrf2-Inducer Prevents Mitochondrial Defects and Oxidative Stress in Friedreich's Ataxia Models

In Friedreich's Ataxia, increased oxidative stress leads to a chronic depletion of endogenous antioxidants, which affects the survival of the cells and causes neurodegeneration. In particular, cerebellar granule neurons (CGNs) show a significant increase of reactive oxygen species (ROS), lipid peroxidation and lower level of reduced glutathione (GSH). In FRDA, one of the major pathways of oxidant scavengers, the Nrf2 antioxidant pathway, is defective. Previous studies on FRDA-like CGNs showed that the reduced level of frataxin and the oxidative stress induce mitochondrial impairments. By triggering the Nrf2 pathway pharmacologically we determined whether this could promote mitochondrial fitness and counteract oxidative stress. In this work, we sought to investigate the beneficial effect of a promising Nrf2-inducer, omaveloxolone (omav), in CGNs from two FRDA mouse models, KIKO and YG8R, and human fibroblasts from patients. We found that CGNs from both KIKO and YG8R presented Complex I deficiency and that omav was able to restore substrate availability and Complex I activity. This was also confirmed in human primary fibroblasts from FRDA patients. Although fibroblasts are not the major tissue affected, we found that they show significant differences recapitulating the disease; this is therefore an important tool to investigate patients' pathophysiology. Interestingly, we found that patient fibroblasts had an increased level of endogenous lipid peroxidation and mitochondrial ROS (mROS), and lower GSH at rest. Omav was able to reverse this phenotype, protecting the cells against oxidative stress. By stimulating the cells with hydrogen peroxide (H2O2) and looking for potential mitochondrial pathophysiology, we found that fibroblasts could not maintain their mitochondrial membrane potential (ΔΨm). Remarkably, omav was protective to mitochondrial depolarization, promoting mitochondrial respiration and preventing cell death. Our results show that omav promotes Complex I activity and protect cells from oxidative stress. Omav could, therefore, be used as a novel therapeutic drug to ameliorate the pathophysiology of FRDA.

Read the entire article HERE

Page 1 of 23

SHARE

FacebookTwitterLinkedInYoutube
Event C.jpg

 

Archived in
  Scientific News


 

 

Tagged in
FARA Scientific News