Accept Cookies?
Provided by OpenGlobal E-commerce

Please wait while your page loads ...

FARAFARA Cure FA

 

FARA Funded Research

Your generous support has funded all the research listed below.

For more information on FARA-funded research & scientists, please visit FARA Supported Research, Active Clinical Trials and the Featured Scientist.


 

 

Impact of diabetes in the Friedreich ataxia clinical outcome measures study

OBJECTIVE: Friedreich ataxia (FA) is a progressive neuromuscular disorder caused by GAA triplet repeat expansions or point mutations in the FXN gene. FA is associated with increased risk of diabetes mellitus (DM). This study assessed the age-specific prevalence of FA-associated DM and its impact on neurologic outcomes.

RESEARCH DESIGN AND METHODS: Participants were 811 individuals with FA from 12 international sites in a prospective natural history study (FA Clinical Outcome Measures Study, FACOMS). Physical function was assessed, using validated instruments. Multivariable regression analyses examined the independent association of DM with outcomes.

RESULTS: Mean age of participants was 30.1 years (SD 15.3, range: 7-82), 50% were female, and 94% were non-Hispanic white. 9% (42/459) of adults and 3% (10/352) of children had DM. Individuals with FA-associated DM were older (P < 0.001), had longer GAA repeat length on the least affected FXN allele (P = 0.037), and more severe FA (P = 0.0001). Of individuals with DM, 65% (34/52) were taking insulin. Even after accounting statistically for both age and GAA repeat length, DM was independently associated with greater FA symptom burden (P = 0.010), reduced capacity to perform activities of daily living (P = 0.021), and a decrease of 0.33 SDs on a composite performance measure (95% CI: -0.56-0.11, P = 0.004); the relative impact of DM was most apparent in younger individuals.

CONCLUSIONS: DM-associated FA has an independent adverse impact on well-being in affected individuals, particularly at younger ages. In future, evidence-based approaches for identification and management of FA-related DM may improve both health and function.

Read the entire article HERE

Selected missense mutations impair frataxin processing in Friedreich ataxia

Frataxin (FXN) is a highly conserved mitochondrial protein. Reduced FXN levels cause Friedreich ataxia, a recessive neurodegenerative disease. Typical patients carry GAA repeat expansions on both alleles, while a subgroup of patients carry a missense mutation on one allele and a GAA repeat expansion on the other. This article reports that selected disease-related FXN missense mutations impair FXN localization, interaction with mitochondria processing peptidase, and processing.

The group found that FXNI154F and FXNG130V missense mutations decrease FXN 81-210 levels compared with FXNWT, FXNR165C, and FXNW155R, but do not block its association with mitochondria. FXNI154F and FXNG130V also impair FXN maturation and enhance the binding between FXN 42-210 and mitochondria processing peptidase. Furthermore, blocking proteosomal degradation does not increase FXN 81-210 levels. Additionally, impaired FXN processing also occurs in fibroblasts from patients with FXNG130V. Finally, clinical data from patients with FXNG130V and FXNI154F mutations demonstrates a lower severity compared with other individuals with Friedreich ataxia.

These data suggest that the effects on processing associated with FXNG130V and FXNI154F mutations lead to higher levels of partially processed FXN, which may contribute to the milder clinical phenotypes in these patients.

Read more HERE

Heart and Nervous System Pathology in Compound Heterozygous Friedreich Ataxia

In a small percentage of patients with Friedreich ataxia (FA), the pathogenic mutation is compound heterozygous, consisting of a guanine-adenine-adenine (GAA) trinucleotide repeat expansion in one allele, and a deletion, point mutation, or insertion in the other. In 2 cases of compound heterozygous FA, the GAA expansion was inherited from the mother, and deletions from the father. Compound heterozygous FA patient 1, an 11-year-old boy (GAA, 896/c.11_12TCdel), had ataxia, chorea, cardiomyopathy, and diabetes mellitus. Compound heterozygous FA patient 2, a 28-year-old man (GAA, 744/exon 5 del), had ataxia, cardiomyopathy, and diabetes mellitus. Microscopy showed cardiomyocyte hypertrophy, iron-positive inclusions, and disrupted intercalated discs. The cardiac lesions were similar to those in age-matched homozygous FA patients with cardiomyopathy and diabetes mellitus (boy, 10, GAA 1016/1016; woman, 25, GAA 800/1100). The neuropathology was also similar and included hypoplasia of spinal cord and dorsal root ganglia, loss of large axons in dorsal roots, and atrophy of the dentate nucleus (DN). Frataxin levels in heart and DN of all 4 FA cases were at or below the detection limits of the enzyme-linked immunosorbent assay (≤10 ng/g wet weight) (normal DN: 126 ± 43 ng/g; normal heart: 266 ± 92 ng/g). The pathologic phenotype in homozygous and compound heterozygous FA is determined by residual frataxin levels rather than unique mutations.

Read more HERE

Pharmacological therapeutics in Friedreich Ataxia: The present state

Friedreich ataxia (FRDA) is a progressive, inherited, neurodegenerative disease for which there is currently no cure or approved treatment. FRDA is caused by deficits in the production and expression of frataxin, a protein found in the mitochondria that is most likely responsible for regulating iron-sulfur cluster enzymes within the cell. A decrease in frataxin causes dysfunction of adenosine triphosphate synthesis, accumulation of mitochondrial iron, and other events leading to downstream cellular dysfunction. Areas covered: Therapeutic development for FRDA currently focuses on improving mitochondrial function and finding ways to increase frataxin expression. Additionally, the authors will review potential approaches aimed at iron modulation and genetic modulation. Finally, gene therapy is progressing rapidly and is being explored as a treatment for FRDA. Expert commentary: The collection of multiple therapeutic approaches provides many possible ways to treat FRDA. Although the mitochondrial approaches are not thought to be curative, as the primary frataxin deficit will remain, they may still produce improvements in quality of life and slowing of progression. Therapies aimed at frataxin restoration are more likely to truly modify the disease, with gene therapy as the best possibility to alter the course of the disease from both a cardiac and neurological perspective.

Read more HERE

Nicotinamide mononucleotide requires SIRT3 to improve cardiac function and bioenergetics in a Friedreich's ataxia cardiomyopathy model

Increasing NAD+ levels by supplementing with the precursor nicotinamide mononucleotide (NMN) improves cardiac function in multiple mouse models of disease. While NMN influences several aspects of mitochondrial metabolism, the molecular mechanisms by which increased NAD+ enhances cardiac function are poorly understood. A putative mechanism of NAD+ therapeutic action exists via activation of the mitochondrial NAD+-dependent protein deacetylase sirtuin 3 (SIRT3). This group assessed the therapeutic efficacy of NMN and the role of SIRT3 in the Friedreich's ataxia cardiomyopathy mouse model (FXN-KO). At baseline, the FXN-KO heart has mitochondrial protein hyperacetylation, reduced Sirt3 mRNA expression, and evidence of increased NAD+ salvage. Remarkably, NMN administered to FXN-KO mice restores cardiac function to near-normal levels. To determine whether SIRT3 is required for NMN therapeutic efficacy, we generated SIRT3-KO and SIRT3-KO/FXN-KO (double KO [dKO]) models. The improvement in cardiac function upon NMN treatment in the FXN-KO is lost in the dKO model, demonstrating that the effects of NMN are dependent upon cardiac SIRT3. Coupled with cardio-protection, SIRT3 mediates NMN-induced improvements in both cardiac and extracardiac metabolic function and energy metabolism. Taken together, these results serve as important preclinical data for NMN supplementation or SIRT3 activator therapy in Friedreich's ataxia patients.

Read more HERE

Page 1 of 17

SHARE

FacebookTwitterLinkedinShare on Google+
Science C.jpg

 

Archived in
  Scientific News


 

 

Tagged in
FARA Scientific News