Accept Cookies?
Provided by OpenGlobal E-commerce

Please wait while your page loads ...

FARAFARA Cure FA

Synthetic transcription elongation factors license transcription across repressive chromatin

Releasing a paused RNA polymerase II into productive elongation is tightly-regulated, especially at genes that impact human development and disease. To exert control over this rate-limiting step, we designed sequence-specific synthetic transcription elongation factors (Syn-TEFs). These molecules are composed of programmable DNA-binding ligands flexibly tethered to a small molecule that engages the transcription elongation machinery. By limiting activity to targeted loci, Syn-TEFs convert constituent modules from broad-spectrum inhibitors of transcription into gene-specific stimulators. We present Syn-TEF1, a molecule that actively enables transcription across repressive GAA repeats that silence frataxin expression in Friedreich's ataxia, a terminal neurodegenerative disease with no effective therapy. Furthermore, the modular design of Syn-TEF1 defines a general framework for developing a class of molecules that license transcription elongation at targeted genomic loci.

Read the entire article HERE


About the Author

Jen Farmer

Jen Farmer

Executive Director

SHARE

FacebookTwitterLinkedinShare on Google+
Science D.jpg

 

Archived in
  Scientific News


 

 

Tagged in
FARA Scientific News