Emerging evidence supports the beneficial effect of quercetin on liver mitochondrial disorders. However, the molecular mechanism by which quercetin protects mitochondria is limited, especially in alcoholic liver disease. In this study, C57BL/6N mice were fed with Lieber De Carli liquid diet (28% ethanol-derived calories) for 12 weeks plus a single binge ethanol and intervened with quercetin (100 mg/kg.bw). Moreover, HepG2CYP2E1+/+ were stimulated with ethanol (100 mM) and quercetin (50 µM) to investigate the effects of mitochondrial protein frataxin. The results indicated that quercetin alleviated alcohol-induced histopathological changes and mitochondrial functional disorders in mice livers. Consistent with increased PINK1, Parkin, Bnip3 and LC3II as well as decreased p62, TOM20 and VDAC1 expression, the inhibition of mitophagy by ethanol was blocked by quercetin. Additionally, quercetin improved the imbalance of iron metabolism-related proteins expression in alcohol-fed mice livers. Compared with ethanol-treated Lv-empty HepG2CYP2E1+/+ cells, frataxin deficiency further exacerbated the inhibition of mitochondrial function. Conversely, restoration of frataxin expression ameliorated the effect of ethanol. Furthermore, frataxin deficiency reduced the protective effects of quercetin on mitochondria disordered by ethanol. Attentively, ferric ammonium citrate (FAC) and deferiprone decreased or increased frataxin expression in HepG2CYP2E1+/+, respectively. Notably, the authors further found FAC reversed the increasing effect of quercetin on frataxin expression. Ultimately, silencing NCOA4 attenuated the inhibition of quercetin on LDH release and mitochondrial membrane potential increase, and similar results were observed by adding FAC. Collectively, these findings demonstrated quercetin increased frataxin expression through regulating iron level, thereby mitigating ethanol-induced mitochondrial dysfunction.

Read the Full article here